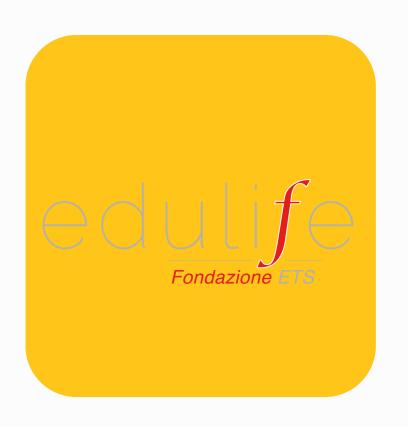


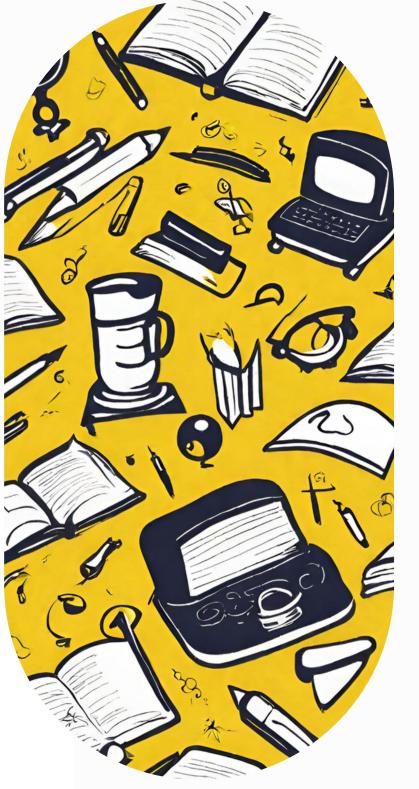
Nuove competenze STEM

UNA PROPOSTA CONCRETA


Edutech

Crediamo nella curiosità, nel futuro, nei giovani.
Dal 2013 accompagniamo i makers alla scoperta ed ideazione di nuovi ed entusiasmanti progetti, carichi di passione e tecnologie.
Verona Fablab è un polo di relazione ed innovazione dove dar vita alle proprie idee.

Social innovation


Creiamo connessioni tra giovani attraverso un uso competente e consapevole delle tecnologie esponenziali e della comunicazione. Rendiamo patrimonio open source le esperienze dirette dei giovani. Vogliamo che diventino un punto di riferimento per i loro coetanei affinché si crei una dinamica di narrazione, ispirazione e confronto.

Come lavoriamo

Gli studenti hanno necessità di **autonomia e responsabilità**, solo in questo modo da adulti saranno in grado di affrontare l'era dell'**apprendimento continuo**.

Ogni contesto formativo può essere generativo di conoscenze tecniche STEM e competenze trasversali essenziali come la collaborazione, la comunicazione, il pensiero critico e la creatività.

La **multidisciplinarietà e il piano di realtà** sono i contesti che abbiamo visto funzionare meglio.

Cooperative Learning

Il Cooperative Learning è un approccio che pone l'enfasi sull'apprendimento collaborativo. Gli studenti lavoreranno in piccoli gruppi, dove ogni membro avrà un ruolo specifico e contribuirà attivamente al raggiungimento degli obiettivi comuni.

Questo metodo rafforza le competenze interpersonali e la capacità di lavorare in squadra, elementi chiave nel contesto professionale moderno.

Il Cooperative Learning sarà utilizzato per promuovere un ambiente di condivisione delle conoscenze, dove gli studenti possono insegnare e imparare gli uni dagli altri, potenziando sia le competenze tecniche che quelle trasversali.

Flipped Learning

Il Flipped Learning inverte il modello tradizionale di lezione: gli studenti acquisiscono conoscenza teorica in modo autonomo, ad esempio attraverso video lezioni o materiali di lettura forniti prima della lezione, e poi applicano tale conoscenza in classe attraverso attività pratiche.

Questo approccio permette un uso più efficace del tempo in classe, focalizzandosi sull'applicazione pratica, sulla discussione e sul problem solving.

Il Flipped Learning sarà utilizzato per massimizzare l'efficienza delle sessioni in aula, dedicando più tempo allo sviluppo pratico del chatbot e alla risoluzione di sfide tecniche e creative.

Design Thinking

Il Design Thinking è una metodologia centrata sull'utente che guida i partecipanti attraverso le fasi di **empatia, definizione, ideazione, prototipazione e test**.

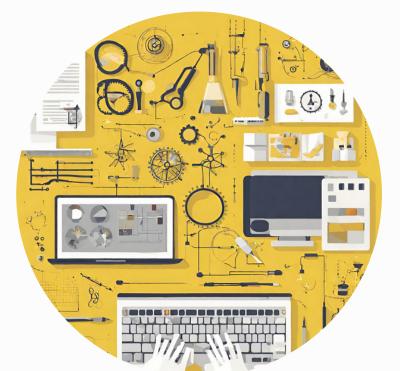
Questo approccio promuove l'innovazione e la creatività, incoraggiando gli studenti a pensare in modo critico e a sviluppare soluzioni che rispondono efficacemente ai bisogni degli utenti. Nel contesto del nostro progetto.

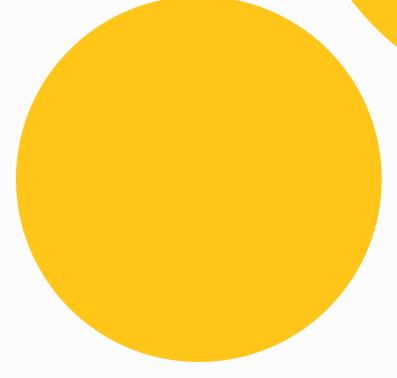
Gli studenti saranno guidati ad analizzare le esigenze degli utenti finali, a generare idee innovative e a sviluppare un prototipo iniziale, che verrà poi testato e perfezionato.

Gli obiettivi

- Promozione dell'Apprendimento Attivo
- Applicazione di Metodologie Didattiche Innovative
- Integrazione tra Teoria e Pratica
- Sviluppo di Competenze Trasversali
- Riflessione e Autovalutazione
- Inclusività e Personalizzazione dell'Apprendimento

Laproposta concreta × × ×


Percorsi di orientamento e formazione per il potenziamento delle competenze STEM


10h⊆30h

gruppo di minimo 9 student*

Primaria

Percorsi di **introduzione alle tecnologie** e sperimentazione con **ricaduta in ambito disciplinare** in una logica mono o multidisciplinare

Secondaria

Percorsi di **sperimentazione** delle tecnologie attraverso **progetti di realtà** utili alla risoluzione di problemi o situazioni interni/esterni alla scuola

Tutte le classi

20 ore

Tinkering

Il "tinkering" è un concetto che si riferisce alla pratica di esplorare, sperimentare e creare attraverso il processo di manipolazione diretta di oggetti o materiali. Coinvolge l'approccio pratico e giocoso per risolvere problemi, costruire, riparare o inventare cose in modo informale e creativo.

Invenzioni con Materiali Riciclati.

Sfida gli studenti a creare nuove invenzioni utilizzando materiali di riciclo. Ad esempio, la creazione di giocattoli, strumenti musicali o dispositivi domestici.

Circuiti Creativi con Elettronica di Base.

Coinvolgi gli studenti nella creazione di circuiti elettronici utilizzando componenti di base come LED, batterie e fili.
Possono progettare e costruire oggetti luminosi, cartoline sonore o semplici dispositivi elettronici.

Sculture Cinetiche.

Invita gli studenti a progettare e costruire sculture cinetiche che si muovono o cambiano forma con l'interazione umana o con il vento. Questo incoraggia la creatività e l'esplorazione delle leggi della fisica.

3^,4^, 5^ scuola primaria, secondaria di primo grado

30 ore

Coding con Scratch

L'obiettivo dei laboratori è quello di favorire la sperimentazione e la realizzazione di progetti interdisciplinari. Il coding rafforza e sviluppa il pensiero computazionale permettendo ai ragazzi di avvicinarsi alla programmazione e di rafforzare il pensiero logico-progettuale

Digital Storytelling con scratch.

I bambini realizzeranno illustrazioni, narrativa e suoni di un racconto per poi ricrearlo in formato digitale grazie a Scratch.

Drammatizzazione Storica.

Realizzare una presentazione animata che racconti un evento storico, coinvolgendo gli utenti nella drammatizzazione digitale e migliorando la comprensione di eventi passati.

Simulazione Scientifica.

Sviluppare una simulazione interattiva che illustra concetti scientifici complessi, come il ciclo dell'acqua, le leggi della fisica o i processi biologici.

Robotica con Mbot e Lego spike

La robotica è un campo multidisciplinare che può generare diversi tipi di apprendimento, con la quale gli individui imparano a scomporre i problemi, a creare algoritmi e a utilizzare la logica per far funzionare i robot in modo efficiente

Crea il tuo tracker di allenamento personalizzato.

Gli studenti possono integrare sensori per monitorare attività fisiche come passi, distanza percorsa o tempi di esercizio, incoraggiando l'interesse per la tecnologia e la salute fisica in modo divertente e interattivo.

Stazione meteorologica.

Creare una stazione
meteorologica robotica che
misura temperature, umidità o
altri parametri ambientali
utilizzando i sensori inclusi nel
kit. Gli studenti possono poi
visualizzare i dati in tempo
reale.

Impresa 4.0. Gli studenti sviluppano competenze in automazione, programmazione e gestione di processi industriali, esplorando il concetto di Industria 4.0 attraverso la creazione di modelli robotici per simulare operazioni di produzione avanzate.

Microprocessori e sensoristica, tecnologia e ambiente

Grazie a microprocessori e sensoristica è possibile creare dispositivi per l'analisi e il controllo ambientale. L'apprendimento relativo ai microprocessori e alla sensoristica all'interno del contesto della tecnologia e dell'ambiente può generare una vasta gamma di esperienze educative e opportunità di apprendimento

URBAN NOISES - misura e trasforma i rumori della città.

Gli studenti misureranno e analizzeranno i livelli di rumore in varie aree della loro scuola utilizzando sensori acustici, per poi progettare soluzioni creative, integrando principi di ingegneria del suono e tecnologie innovative.

Centraline open source per analisi ambientale.

implementazione di centraline open source per l'analisi ambientale: aria, temperatura e umidità. I dati verranno gestiti con dashboard di gestione dei dati

Orto SMART

Progetto STEM che integra sensori di umidità, temperatura e luce per monitorare le condizioni del suolo e dell'ambiente. Verrà realizzata un'applicazione pratica di scienze agrarie e ingegneria.

Prototipazione digitale

La prototipazione digitale a scuola è un'attività che offre numerosi vantaggi educativi e pratici, tramite strumentazioni come Taglio Laser e Stampa 3D.

Apprendimento pratico: Creare prototipi digitali coinvolge l'uso di software e strumenti di progettazione che consentono agli studenti di mettere in pratica ciò che hanno imparato.

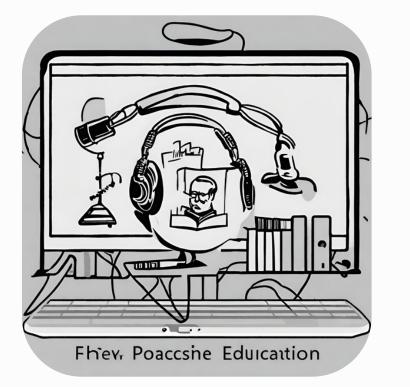
Opere d'arte personalizzate.

Gli studenti possono progettare e stampare modelli personalizzati per studiare l'anatomia umana in modo dettagliato, facilitando la comprensione di concetti complessi.

PRECIOUS PLASTIC

Quanti tipi di plastica esistono? Si possono riciclare tutti? Quali tipi possono essere riciclati da precious plastic? Scopriamo insieme come è possibile riciclare la plastica grazie al kit precious plastic e quali oggetti possiamo creare.

Taglio laser e stampa 3d: nuova forma ai rifiuti


Quanti imballaggi vengono prodotti e di quale tipo?Grazie alla tecnologia del taglio laser e alla creatività utilizziamo i cartoni per creare dei nuovi oggetti.

5^ scuola primaria, secondaria di 1° e 2° grado

30 ore

Podcast Education

Perchè un podcast? Un podcast è uno strumento trasversale per affrontare in maniera innovativa diversi contenuti didattici interdisciplinari. La sua creazione è un modo coinvolgente ed efficace per sviluppare una serie di competenze, includendo la ricerca, la comunicazione, la collaborazione e l'uso delle tecnologie.

Podcast Scientifico.

Gli studenti possono creare un podcast scientifico in cui esplorano e spiegano concetti scientifici complessi in modo accessibile. Ogni episodio può concentrarsi su un argomento specifico come biologia, fisica o chimica.

Interviste a Professionisti STEAM.

Organizzare e condurre interviste con professionisti del settore STEM, esplorando le loro carriere, progetti e contributi. Gli studenti possono imparare da esperti del campo attraverso i podcast.

Storie di Donne in STEM.

Realizzare una serie che racconta le storie di donne influenti nel campo STEM, evidenziando le loro realizzazioni e il loro impatto sulla scienza, tecnologia, ingegneria e matematica.

Racconti Matematici.

Narrare storie interessanti
legate alla matematica,
illustrando l'applicazione
pratica di concetti matematici
attraverso esempi storici o
situazioni quotidiane.

30

ore

secondaria secondo grado

Project Work

La struttura del project work mira a fornire una solida esperienza educativa che equilibra competenze tecniche con sviluppo personale, tutto all'interno di un contesto di apprendimento collaborativo e innovativo.

applicabile in diversi indirizzi tecnici, professionali e licei

Sviluppo di Chatbot Telegram con ChatGPT

Programmazione in Python

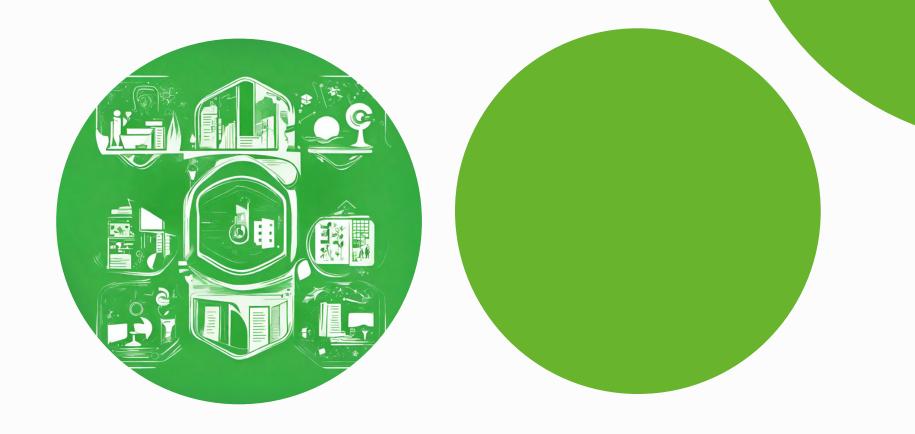
Capacità di utilizzare Python, uno dei linguaggi di programmazione più versatili e richiesti, per lo sviluppo di applicazioni reali.

Sviluppo di Chatbot

Competenze specifiche nello sviluppo di chatbot, incluse la comprensione e l'uso delle API di Telegram.

Integrazione e Utilizzo di ChatGPT

Capacità di integrare e utilizzare l'intelligenza artificiale, in particolare ChatGPT, per elaborare richieste e generare risposte in un contesto di chatbot.



Percorsi di tutoraggio per l'orientamento agli studi e alle carriere STEM, con il coinvolgimento delle famiglie

10h⊆20h

gruppo di minimo 3 student*

Secondaria

Percorsi di riflessione e confronto sul futuro, incontri di student* e professionisti in ambito STEM .Restituzione alle famiglie degli esiti del percorso per favorire una condivisione di percorsi di scelta.

Secondaria di 2º grado

15 ore

Orientamento STEM

Laboratorio di autoriflessione su esperienze formali/non formali di apprendimento.

formali di apprendimento.
Sviluppo quadro di
autovalutazione competenze
trasversali e verticali attraverso
strumenti di auto e covalutazione all'interno del
gruppo classe.

3 ore

Offerta formativa superiore (università- ITS - AFAM).

Focus sulle trasformazioni in atto nella società ed importanza sull'acquisizione di competenze e orientamento ai valori - Laboratorio sui meccanismi di costruzione della scelta.

3 ore

Le grandi trasformazioni nel mondo del lavoro

Laboratorio di indagine sull'impatto delle tecnologie sulle professioni che utilizzano le aree di sapere dell'indirizzo scolastico frequentato

3 ore

LAB FORMAZIONE TERZIARIA

Sessione di Q&A con alcuni studenti frequentanti percorsi formativi universitari, AFAM e ITS academy.

3 ore

LAB MONDO DEL LAVORO

Sessione di Q&A con alcuni lavoratori/imprenditori in ambiti attinenti agli indirizzi proposti dall'istituto ospitante.

3 ore

Quan do? 01.

02.

03.

Orario curricolare

Proposta di attivare percorsi centrati sull'innovazione della didattica, nei quali i docenti saranno coinvolti per coprogettare i percorsi e i sistemi di valutazione

Orario co-curricolare rcorsi pomeridiano

Percorsi formativi da sviluppare nell'anno scolastico attivando una programmazione dilatata in un tempo sostenibile con lo studio degli studenti

Attività estive

percorsi formativi organizzati in settimane full immersion nel periodo estivo (compatibili con PCTO?)

Contatti:

Giorgia Bissoli: giorgia@veronafablab.it

Gianni Martari: g.martari@fondazioneedulife.org

Antonio Faccioli: a.faccioli@fondazioneedulife.org